Spontaneous optical fractal pattern formation*

J G Huang and G S McDonald

Joule Physics Laboratory
School of Computing, Science and Engineering
Institute for Materials Research
University of Salford
Salford M5 4WT, UK

Typical generic signatures of complexity

Spontaneous occurrence of …

1. **SIMPLE PATTERN** (e.g. stripes, hexagons)
 - associated with *one* characteristic scale

2. **COMPLEX PATTERN** (e.g. fractals)
 - associated with *many* decades of scales, ie scale-less

Mandelbrot suggested that …

a fractal is a shape made of parts similar to the whole in some way
Kerr slice with single-feedback mirror system

For optical fields, \(F \) and \(B \), and medium excitation \(n \) ...

\[
\frac{\partial F}{\partial z} = i \chi n F \quad \frac{\partial B}{\partial z} = -i \chi n B
\]

\[-i_d \nabla^2 n + \tau \frac{\partial n}{\partial \tau} + n = |F|^2 + |B|^2\]

where diffraction of spatial transforms of the optical fields, \(B(K) \) and \(F(K) \), gives ...

\[B(K) = e^{-i\theta} F(K)\]

\[\theta = \frac{2d}{k_0} \sqrt{\frac{K^2}{1+\left(1-\frac{K^2}{k_0^2}\right)}}\]

Spatial fluctuations in the medium modulate the optical field phases
(dashed line)

Diffraction produces amplitude modulation
(solid line)
Instability threshold and expected power spectrum

Linear stability analysis gives intensity threshold:

\[I_{th} = \frac{1 + K^2 I_D^2}{2RL\chi \sin(K^2d/k_0)} \]

\(I_D = 0, \tau = 0 \)
Conventional pattern formation

Systems with spatial filtering allow stable hexagonal patterns to appear spontaneously from background noise.
Spatial optical fractals

with removal of such filtering, SIMPLE spatial patterns can evolve to extremely COMPLEX spatial patterns
Pattern and power spectrum evolution in one transverse dimension (x)
Power spectrum evolution in time (with medium diffusion $l_D \neq 0$)

Light travels: Kerr slice \rightarrow feedback mirror \rightarrow Kerr slice in time T_R
Variation of equilibrium power spectra with diffusion length \(l_D \)

(a) \(l_D = 0.8 \)

(b) \(l_D = 0.4 \)

(c) \(l_D = 0.2 \)

(d) \(l_D = 0.1 \)

Equilibrium power spectrum has characteristic slope \(b \)
Variation of slope b of equilibrium power spectrum

(a) b vs diffusion length, I_D

(b) b vs incident field intensity, I_0

Results show dependence of slope b
on I_D and I_0 given by

$$b = b_0 I_D / I_0$$
Variation of fractal dimension versus space frequency K

Average trend of each equilibrium power spectrum:

$$\log(P(K)) = a + bK$$

where a and b are constants dictated by system parameters.

Definition of power spectrum fractal dimension:

$$D = \frac{1}{2} \left[5 + \frac{d(\log P)}{d(\log K)} \right],$$

gives fractal dimension:

$$D(K) = \begin{cases}
2 & \text{when } 5 + \frac{b}{2} K > 2 \\
\frac{5}{2} + \frac{b}{2} K & \text{when } 1 \leq D(K) \leq 2 \\
1 & \text{when } \frac{5}{2} + \frac{b}{2} K < 1
\end{cases}$$

(a) Changing diffusion length, l_D

(b) Changing light intensity, I_0
Variogram dimension of optical field intensity

The variogram dimension of the generated light patterns:

\[D_v = 2 - \frac{1}{2} \frac{d(\log V)}{d(\log W)} \]

Variogram \(V \) is the expected value of squared difference of intensities separated in space by distance \(W \)

(a) slope=1.996, \(D_v = 1.002 \)
(b) slope=1.002, \(D_v = 1.499 \)
(c) slope=0.49, \(D_v = 1.755 \)
(d) slope=0, \(D_v = 2 \)
Other example non-linear systems

(i) Counter-propagating beams – no cavity [1]

(ii) Ring cavity with 2-level atoms [2]

Conclusions

- New generic mechanism for spontaneous fractal pattern formation (expected in wide variety of non-linear systems)

- Spatial filtering allows demonstration of both SIMPLE (conventional) pattern formation and COMPLEX (fractal) pattern formation in same optical system

- This system: dependence of spectral characteristics (on diffusion and intensity) given by rather simple law

- Analytical form derived for scale-dependent fractal dimension (predictions confirmed by variogram analysis)