Skip to main content

Diagnostic Imaging

The Diagnostic Imaging Research Programme (DIRP) was formed in early 2009 within the Directorate of Radiography at the University of Salford. Today it is comprised of a radiographer-led Research Programme with: 21 PhD students, 13 academic staff in radiography with research time allocations between 100% and 5%; internal University of Salford multi-disciplinary research collaborations involving Computer Science, Engineering, Psychology, Nursing and Occupational Therapy; external multi-disciplinary research collaborations involving radiographers, medical practitioners, orthoptists, computer scientists and medical physicists from academic and hospital settings around the world. As an academic department of radiography we are ranked first in the UK and third in the world for journal publications per annum; typically we publish 20-25 peer reviewed papers a year and present a similar number of papers at international conferences. At any one time there will be around 30 research projects ongoing.

Our key research themes are explained in the next section:

Our research has two foci:

1. Breast Cancer Screening and Diagnosis using Full Field Digital Mammography (FFDM)

2. Dose and Image Quality Optimisation, and Lesion Detection Performance

Some overlap exists between the two foci, with detection performance and dose/image quality optimisation studies occuring in FFDM.


Breast Cancer - Screening & Diagnosis using Full Field Digital Mammography (FFDM)

Theme Lead: Professor Peter Hogg

This has qualitative and quantitative components; however the majority of our research projects are quantitative in nature. Various ways can be used to outline the research we conduct and for the purposes of this paper they are broken down into three categories: technical; practice-based; social.

Our technical research relates to applied physics, engineering and computing and the projects investigate equipment-related matters which are grounded on practical issues which arise in the clinical setting. Examples of this research include: 1. Identification of causation for and minimisation of reasons leading to blurred FFDM images. Blurred FFDM images can lead to false diagnoses and unnecessary repeat examinations. Repeat imaging can heighten client / family anxiety, increase overall breast screening costs and contribute to unnecessary radiation dose. 2. Development of new mathematical models for predicting total lifetime radiation risk from screening mammography. These models are important as they can help clients make informed decisions about whether or not they wish to participate in screening; also they allow for comparisons between country-based screening programmes, intra-country screening regimes and FFDM machines. 3. Identification of FFDM machine inaccuracies which can lead to errors in practice, for instance inaccurate breast cancer risk stratification for future screening and lesion localisation as part of biopsy processes. 4. Analyses of computer screen display capabilities for technical checking and reporting of FFDM images. Our work here has already found that the technical checking monitors located in the clinical rooms might not be of an adequate standard to check images before sending them for reporting.

Our practice-based research mainly relates to improving FFDM image quality and screening client experience during the imaging process. Examples of our research include: 1. identification and minimisation of compression force variability between and within practitioners. We were the first to prove the existence of this, initially focusing our work on a UK population. Since then we have published a major piece of research which assessed the entire screening population of Norway. Impact from this has been high, with an international software company introducing an automated method to assess practitioner variability. This, it is hoped, will allow for easy identification of outliers and the ability to implement solutions on a global scale. 2. Interval cancers are cancers which occur between screening rounds. The way in which they are evaluated within our breast screening service is biased. We are working towards creating a new method to investigate and classify interval cancers. 3. Improving FFDM positioning technique to ensure standardisation, minimise discomfort and improve lesion detection performance. 4. Assessing the impact of visual acuity in breast cancer detection performance with a view to setting standards for eye sight checking (similar to driving a car).

Our social research involves interfacing with the general public, particularly with regards to breast screening. One example is The Word Of Mouth Mammogram e-Network (WOMMeN) project, which is a user-designed, on-line, breast screening information and discussion space. We also have a number of PhD projects exploring the beliefs and behaviours of women from a range of cultures with regard to breast screening. Another PhD student has investigated how clients and practitioners can work together to design mammography equipment.

Over the last five years our breast cancer research has won several awards, including best paper in an international journal and several conference prizes. The WoMMeN project team were awarded the 2016/17 Society and College of Radiographers (SCoR) Team of the Year prize, and the WoMMeN hub was shortlisted in the Public Health England category for the 2017 Advancing Health care Awards. Building on our research we have published the most up to date book available about clinical practice using FFDM.1 Our breast cancer research work has received professional accreditation from SCoR; ours is the only research they have given professional accreditation to.

1. Digital Mammography: A holistic approach, Hogg P, Kelly J and Mercer C, Springer, 2015, ISBN 978-3-319-04831-4


X-ray - Dose and Image Quality Optimisation, and Lesion Detection Performance

Theme Lead: Dr Andrew England

This research relates directly to general radiography imaging practice. We investigate and solve a range of clinically relevant imaging problems that face practitioners on a daily basis. Radiation dose and dose optimisation is a serious concern and can be a limitation when attempting to preserve the diagnostic quality of the image. This research theme covers a large range of imaging modalities and examinations. We use a range of methods within this research theme:

  • Estimations of dose, including modelling and measurement
  • Image quality evaluations using physical and psychophysical measures
  • Observer performance assessment, including 2 alternative forced choice (2AFC) and free-response receiver operating characteristic (FROC) methods

Many aspects of this research have a close relationship with student learning in our BSc Diagnostic Radiography.


  • Mammography: Practitioner Compression Force Variability
  • Mammography: Compression Paddle Motion and Image Blur
  • Computed Tomography: Low-Dose CT in SPECT/CT and PET/CT
  • Computed Tomography: Dose and Image Quality Optimisation
  • Paediatric Imaging: Dose and Image Quality Optimisation in DR and CT
  • Dose Optimisation: Investigating Behavioural Trends within Clinical Practice
  • Visual Acuity: The Impact of Reduced Visual Acuity on Observer Performance

Recent Books

Practical SPECT/CT in nuclear medicine, Jones D, Hogg P, Seeram E, Springer, 2013, ISBN 978-1-4471-4703-9

Digital Mammography, a holistic approach, Hogg P, Mercer C and Kelly J, Springer, 2014, ISBN 978-3-319-04831-4

Radiation dose and image quality optimisation in medical imaging, Hogg P, Lanca, Open Source, 2014, ISBN 978-1-907842-60-3


Recent Selected Journal Articles

2017

A Tootell, K Szczepura, and P Hogg. "Analysis of effective and organ dose estimation in CT when using mA modulation: A single scanner pilot study." Radiography  23, 159-166 (2017). doi:10.1016/j.radi.2017.02.006J.D.

J.D. Thompson, A Wareing, K.R. Szczepura, S. Vinjamuri, P Hogg. "A JAFROC study of nodule detection performance in CT images of a thorax acquired during PET/CT." Radiography (in press).doi:10.1016/j.radi.2017.03.001

J.B. Robinson, R Ali, A.K. Tootell, P Hogg. "Does collimation affect patient dose in antero-posterior thoraco-lumbar spine?" Radiography (in press). doi:10.1016/j.radi.2017.03.012

J Tugwell, A England, P Hogg. "Antero-posterior (AP) pelvis x-ray imaging on a trolley: impact of trolley design, mattress design and radiographer practice on image quality and radiation dose." Radiography (in press). Pending doi

B Scragg, S Shaikh, L Robinson, C Mercer. "Mixed messages: an evaluation of NHS Trust Social Media Policies in the North West of England." Radiography (in press). doi:10.1016/j.radi.2017.03.018

B Scragg, S Shaikh, G Shires, J Stein Hodgins, C Mercer, L Robinson, J Wray. "An exploration of mammographers’ attitudes towards the use of Social Media for providing breast screening information to clients." Radiography (in press). doi:10.1016/j.radi.2017.04.004


2016

J.D. Thompson, D.P. Chakraborty, K. Szczepura, A.K. Tootell, I. Vamvakas, D.J. Manning, and P. Hogg, “Effect of reconstruction methods and x-ray tube current–time product on nodule detection in an anthropomorphic thorax phantom: A crossed-modality JAFROC observer study,” Med. Phys. 43, 1265–1274 (2016). doi: 10.1118/1.4941017

J.D. Thompson, N.B. Thomas, D.J. Manning, and P. Hogg, “The impact of greyscale inversion for nodule detection in an anthropomorphic chest phantom: a free-response observer study,” Br. J. Radiol. 89, 20160249 (2016). doi: 10.1259/bjr.20160249

C. Charnley, A. England, A. Martin, S. Taylor, N. Benson, and L. Jones, “An option for optimising the radiographic technique for horizontal beam lateral (HBL) hip radiography when using digital X-ray equipment,” Radiography 22, e137–e142 (2016). doi: 10.1016/j.radi.2016.01.004

H.A.A.B. Mraity, A. England, S. Cassidy, P. Eachus, A. Dominguez, and P. Hogg, “Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images,” Br. J. Radiol. (2016). doi: 10.1259/bjr.20150430

A. Sanderud, A. England, P. Hogg, K. Fosså, S.F. Svensson, and S. Johansen, “Radiation dose differences between thoracic radiotherapy planning CT and thoracic diagnostic CT scans,” Radiography 22, 107–111 (2016). doi: 10.1016/j.radi.2015.08.003


2015

R.M. Ali, A. England, M.F. McEntee, and P. Hogg, “A method for calculating effective lifetime risk of radiation-induced cancer from screening mammography,” Radiography 21, 298–303 (2015). doi: 10.1016/jradi.2015.07.008

E. Davey and A. England, “AP versus PA positioning in lumbar spine computed radiography: Image quality and individual organ doses,” Radiography 21, 188–196 (2015). doi:10.1016/j.radi.2014.11.003

M. Jessop, J.D. Thompson, J. Coward, A. Sanderud, J. Jorge, M. de Groot, L. Lança, and P. Hogg, “Lesion Detection Performance: Comparative Analysis of Low-Dose CT Data of the Chest on Two Hybrid Imaging Systems.,” J. Nucl. Med. Technol. 43, 47–52 (2015). doi:10.2967/jnmt.114.147447

W.K. Ma, R. Aspin, J. Kelly, S. Millington, and P. Hogg, “What is the minimum amount of simulated breast movement required for visual detection of blurring? An exploratory investigation,” Br. J. Radiol. 88, 20150126 (2015). doi:10.1259/bjr.20150126

C.E. Mercer, K. Szczepura, J. Kelly, S.R. Millington, E.R.E. Denton, R. Borgen, B. Hilton, and P. Hogg, “A 6-year study of mammographic compression force: Practitioner variability within and between screening sites,” Radiography 21, 68–73 (2015). doi:10.1016/j.radi.2014.07.004

F. Murphy, J. Nightingale, P. Hogg, L. Robinson, D. Seddon, and S. Mackay, “Compression force behaviours: An exploration of the beliefs and values influencing the application of breast compression during screening mammography,” Radiography 21, 30–35 (2015). doi:10.1016/j.radi.2014.05.009

L. Robinson, M. Griffiths, J. Wray, C. Ure, G. Shires, J.R. Stein-Hodgins, C. Hill, and B. Hilton, “Preparing women for breast screening mammography: A feasibility study to determine the potential value of an on-line social network and information hub,” Radiography 21, 308–314 (2015). doi:10.1016/j.radi.2015.07.004

McWilliams, R.K. Fisher, A. England, and F. Torella, “Observations on Surveillance Imaging After Endovascular Sealing of Abdominal Aortic Aneurysms With the Nellix System,” J. Endovasc. Ther. 22, 303–306 (2015). doi: 10.1177/1526602815582209


2014

B. Al Qaroot, P. Hogg, M. Twiste, and D. Howard, “A systematic procedure to optimise dose and image quality for the measurement of inter-vertebral angles from lateral spinal projections using Cobb and superimposition methods,” J. Xray. Sci. Technol. 22, 613–625 (2014). doi: 10.3233/XST-140449

J. Coward, R. Lawson, T. Kane, M. Elias, A. Howes, J. Birchall, and P. Hogg, “Multi-centre analysis of incidental findings on low-resolution CT attenuation correction images,” Br. J. Radiol. 87, 20130701 (2014). doi: 10.1259/bjr.20130701

J.D. Thompson, P. Hogg, D.J. Manning, K. Szczepura, and D.P. Chakraborty, “A Free-response Evaluation Determining Value in the Computed Tomography Attenuation Correction Image for Revealing Pulmonary Incidental Findings,” Acad. Radiol. 21, 538–545 (2014). doi: 10.1016/j.acra.2014.01.003

A.K. Tootell, K. Szczepura, and P. Hogg, “Comparison of effective dose and lifetime risk of cancer incidence of CT attenuation correction acquisitions and radiopharmaceutical administration for myocardial perfusion imaging,” Br. J. Radiol. 87, (2014). doi: 10.1259/bjr.20140110


2013

P. Hogg, K. Szczepura, A. Darlington, and A. Maxwell, “A method to measure paddle and detector pressures and footprints in mammography,” Med. Phys. 40, 41907 (2013). doi: 10.1118/1.4792720

P. Hogg, M. Taylor, K. Szczepura, C. Mercer, and E. Denton, “Pressure and breast thickness in mammography - An exploratory calibration study,” Br. J. Radiol. 86, (2013). doi: 10.1259/bjr.20120222

C.E. Mercer, P. Hogg, R. Lawson, J. Diffey, and E.R.E. Denton, “Practitioner compression force variability in mammography: A preliminary study,” Br. J. Radiol. 86, (2013). doi: 10.1259/bjr.20110596


2012

I.H.R. Hauge, P. Hogg, K. Szczepura, P. Connolly, G. McGill, and C. Mercer, “The readout thickness versus the measured thickness for a range of screen film mammography and full-field digital mammography units.,” Med. Phys. 39, 263–71 (2012). doi: 10.1118/1.3663579

J.M. Nightingale, F.J. Murphy, and C. Blakeley, “‘I thought it was just an x-ray’: a qualitative investigation of patient experiences in cardiac SPECT-CT imaging,” Nucl. Med. Commun. 33, 246–254 (2012). doi: 10.1097/MNM.0b013e32834f90c6


2011

P. Ruparelia, K.R. Szczepura, C. Summers, C.K. Solanki, K. Balan, P. Newbold, D. Bilton, A.M. Peters, and E.R. Chilvers, “Quantification of neutrophil migration into the lungs of patients with chronic obstructive pulmonary disease,” Eur. J. Nucl. Med. Mol. Imaging 38, 911–919 (2011). doi: 10.1007/s00259-010-1715-7


We have a thriving and friendly PhD community, comprising full time and part time students. The majority of our PhD research focuses on one of our three key research themes. However, because of collaboration a minority of our PhD research activity is not within our research themes. At the moment we are not offering a grant to do a PhD. Nevertheless, PhD research opportunities do exist for externally funded PhD students; below are some sample project areas:

Breast cancer diagnosis using full field digital mammography

  • Use of social media to support and inform women who are or will be eligible for mammography breast screening
  • Exploration of the use of social media for health professions in the context of mammography breast screening
  • Analysis of lifetime effective radiation risk in full field digital mammography and tomosynthesis
  • Determination of a minimum computer monitor specification for assessing mammography images for technical accuracy only
  • Refinement and validation of novel mathematical models for simulating blurring in mammography images
  • Exploration of compression paddle motion whilst in the ‘clamped phase’
  • Breast density error analysis due to mammography machine compressed breast thickness when using automated computer mathematical models

Dose / image quality optimisation and lesion detection performance in CR/DR/CT

  • Refinement and validation of a novel mathematical model to simulate reduced mA in CT images
  • Development and validation of image quality scales based upon psychometric theory
  • Analysis of visual acuity and lesion detection performance using ROC methodologies
  • Analysis of lesion detection performance, using ROC methodologies, in chest CT at low dose
  • Development and validation of methodologies and methods for the translation of dose/image (DR/CR) quality optimisation techniques into clinical practice and teaching / learning
  • Evaluation of a novel method for evaluating lesion conspicuity
  • Impact of tube orientation on patient dose using CR/DR for AP pelvis

Breast Cancer - Full Field Digital Mammography (FFDM)
Theme Lead: Professor Peter Hogg

  • Samantha Bird: Experiences of mammographers and female members of the public who are involved as members of a collaborative design team for medical imaging equipment
  • Raed Ali: Analysis of mammography breast screening programmes using lifetime effective radiation risk
  • Olan Olanrewaju: Nigerian women’s perception of mammography breast screening

Ultrasound – Diagnosis and Management of Lower Limb Musculo-Skeletal Disorders
Theme Lead: Dr Gillian Crofts

  • Hussein Mriaty: Dose and image quality optimisation in AP pelvis x-ray imaging on fixed imaging tables; a component of this thesis has also developed a novel scale for assessing visual image quality
  • Jenna Tugwell: Dose and image quality optimisation in AP pelvis imaging on trolley patients
  • Rawan Abdeen: Ultrasound of acute lateral ankle sprains
  • Josephine Tityiwe: Ultrasound pathway for managing diabetic foot 
  • Theophilus Akudjrdu: Ultrasound of rear foot movement in lateral ankle sprain 
  • Joanna Reeves: EMG and ultrasound evaluation of an orthotic device. 
  • Jamal Behrani: Novel analysis of ultrasound achilles tendon imaging
  • Abdelhafid Bassour: Novel analysis of ultrasound plantar fascia imaging
  • Nur ZareenZulkarnaiu: Standardised reporting system for ultrasound examinations

X-ray – Dose and Image Quality Optimisation, and Lesion Detection Performance
Theme Lead: Dr Andrew England

  • Mohammed Benhalim: CT brain dose in paediatric and adult patients
  • Randeep Kulshrestha: 18F imaging in the detection of secondary bone cancer from primary breast cancer
  • Ahmed Abdullah: Impact of image blurring in lesion detection performance in full field digital tomography
  • Maily Alrowily: Patient dose and image quality in abdominal CT scanning for fixed and automatic tube current
  • Maryam Jessop:  Relationship between visual perception and physical measures of image quality and lesion visibility
  • Sadeq Al-Murshedy: Optimum acquisition parameters for DR chest examinations whilst considering changes in paediatric age/size
  • Ali Hussain; Optimum kVp and filter combinations for paediatric radiography of the pelvis

Other Topics
Various Supervisors

  • Seth Angmorterh: Pressure ulcer risk for patients attending diagnostic imaging and radiotherapy procedures using pressure mapping technology
  • Tracey O'Regan: Radiographer’s ‘voice’

If you are interested in our research or planning to undertake a PhD, please contact:

Professor Peter Hogg
P.Hogg@Salford.ac.uk

The Team

Dr Andrew England

Radiography

Prof Peter Hogg

Medical Imaging, Radiography

Dr Clairer Mercer

Mammography

Dr Frederick Murphy

Radiography

Dr Ann Newton-Hughes

Prof Julie Nightingale

Radiography

Dr Leslie Robinson

Radiography

Katy Szczepura

Dr John Thompson

Andrew Tootell

Dr Lucy Walton

In addition to the above staff in Radiography, our teams include other University of Salford academics:

  • Professor Dave Howard | Engineering
  • Dr Rob Aspin | Computer Science
  • Dr Peter Eachus | Psychology
  • Dr Simon Cassidy | Psychology

Our teams also benefit from significant input from a broad range of external professionals who hold honorary research appointments with us:

  • Professor Richard Lawson | Medical Physics
  • Professor David Brettle | Medical Physics
  • Professor David Manning | Medical Image Perception
  • Professor Nigel Thomas | Consultant Radiologist
  • Dr Tom Kane | Consultant Radiologist
  • Professor Sobhan Vinjamuri | Consultant Nuclear Medicine Physician
  • Judith Kelly | Consultant Practitioner in Mammography
  • Rita Borgen | Consultant Practitioner in Mammography